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Abstract

In this paper, we show interesting self equivalence results for the alternating direction method of

multipliers (ADM or ADMM). Specifically, we show that ADM on a primal problem is equivalent to

ADM on its Lagrange dual problem; ADM is equivalent to a primal-dual algorithm applied to a saddle-

point formulation of the problem; when one of the two objective functions is quadratic with an affine

domain, we can swap the update order of the two variables in ADM and obtain an equivalent algorithm.

An example in extended monotropic programming is given to demonstrate that the primal-dual algorithm

may be preferable over the other equivalent algorithms for its lower per-iteration complexity and, in the

setting of distributed computation, better load balancing.

Keywords: Alternating Direction Method of Multipliers (ADM/ADMM), Douglas-Rachford Splitting

(DRS), Primal-Dual Algorithm, Extended Monotropic Programming, Total Variation

1 Introduction

The alternating direction method of multipliers (ADM or ADMM) is very effective at solving complicated

convex optimization problems. It applies to linearly-constrained convex optimization problems with separable

objective functions in the following form:{
minimize

x,y
f(x) + g(y)

subject to Ax + By = b,
(P1)

where f, g are proper, closed, convex functions (may not be differentiable) and A,B are linear mappings.

ADM has been applied to both the primal and dual problems in many applications. For example, it was

applied to both the primal and dual problems for `1 minimization in [20, 19]. As another example, ADM

was applied to the dual problem in [12] and to the corresponding primal problem in [11].

In this paper, we show the following equivalence results for ADM:

1. It is equivalent to apply ADM to either the original form or the Lagrange dual of (P1).

2. ADM on either (P1) or its dual is equivalent to a primal-dual algorithm applied to a saddle-point

formulation of (P1); in the latter algorithm, since one of the primal variables is hidden, each iteration

may have a lower complexity than the other equivalent ones, as we shall demonstrate by an example.

3. Whenever either f or g is a quadratic (or, affine or linear) function, defined on either the whole space

or an affine domain, swapping the order of x and y in ADM yields an equivalent algorithm.
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In all the three cases, given the iterates of one algorithm, we can recover the iterates of the equivalent

algorithm by properly setting the initial iterates of the latter.

1.1 Notation and assumptions

Let H1, H2, and G be (possibly infinite dimensional) Hilbert spaces. Bold lowercase letters such as x, y,

u, and v are used for points in the Hilbert spaces. In the example of (P1), we have x ∈ H1, y ∈ H2, and

b ∈ G. When the Hilbert space a point belongs to is clear from the context, we do not specify it for the

sake of simplicity. The inner product between points x and y is denoted by 〈x,y〉, and ‖x‖2 :=
√
〈x,x〉 is

the corresponding norm. ‖ · ‖1 and ‖ · ‖∞ denote the `1 and `∞ norms, respectively. Bold uppercase letters

such as A and B are used for both continuous linear mappings and matrices. A∗ denotes the adjoint of A.

I denotes the identity map.

Both lower and upper case letters such as f , g, F , and G are used for functions. ιC denotes the indicator

function of the set C, which is assumed to be convex and nonempty. ιC is defined as follows:

ιC(x) =

{
0, if x ∈ C,
∞, if x /∈ C.

We make the following assumption throughout the paper:

Assumption 1. Functions in this paper are assumed to be proper, closed, and convex. The saddle-point

solutions to all the optimization problems in this paper are assumed to exist.

Let ∂f(x) be the subdifferential of function f at x. The proximal operator proxf(·) is defined as

proxf(·)(x) = arg min
y

f(y) +
1

2
‖y − x‖22,

where the minimization has the unique solution. The convex conjugate f∗ of function f is defined as

f∗(v) = sup
x
{〈v,x〉 − f(x)}.

Let PB∞1 be the projection onto the unit `∞ “ball” B∞1 := {x : ‖x‖∞ ≤ 1}.

1.2 Organizations

This paper is organized as follows. The three equivalence results for ADM are shown in sections 2, 3,and 4:

The primal-dual equivalence is discussed in sections 2; ADM is shown to be equivalent to a primal-dual

algorithm applied to the saddle-point formulation in section 3; In section 4, we show that swapping the order

of x and y in ADM yields an equivalent algorithm if f or g satisfies the condition mentioned above. We

conclude this paper with two applications of our results: extended monotropic programming in section 5 and

total variation image denoising in section 6.

2 Equivalence of ADM on primal and dual problems

In this section we show that ADM applied to (P1) is equivalent to it applied to the Lagrange dual of (P1).

Algorithm 1 describes how ADM is applied to (P1) [13, 14].
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Algorithm 1 ADM on (P1)

initialize x0
1, z0

1, λ > 0

for k = 0, 1, · · · do

yk+1
1 = arg min

y
g(y) + (2λ)−1‖Axk1 + By − b + λzk1‖22

xk+1
1 = arg min

x
f(x) + (2λ)−1‖Ax + Byk+1

1 − b + λzk1‖22
zk+1

1 = zk1 + λ−1(Axk+1
1 + Byk+1

1 − b)

end for

A primal formulation equivalent to (P1) is{
minimize

s,t
F (s) +G(t)

subject to s + t = 0,
(P2)

where s, t ∈ G and

F (s) := min
x
f(x) + ι{x:Ax=s}(x), (1a)

G(t) := min
y
g(y) + ι{y:By−b=t}(y). (1b)

Remark 1. If we define Lf and Lg as Lf (x) = Ax and Lg(y) = By − b, respectively, then F and G are

known as the infimal postcompositions of f and g by Lf and Lf , respectively, according to [1, Def. 12.33].

They are written as

F = Lf . f, G = Lg . g.

Algorithm 2 gives ADM applied to (P2). We will show Algorithms 1 and 2 are (trivially) equivalent.

Algorithm 2 ADM on (P2)

initialize s0
2, z0

2, λ > 0

for k = 0, 1, · · · do

tk+1
2 = arg min

t
G(t) + (2λ)−1‖sk2 + t + λzk2‖22

sk+1
2 = arg min

s
F (s) + (2λ)−1‖s + tk+1

2 + λzk2‖22
zk+1

2 = zk2 + λ−1(sk+1
2 + tk+1

2 )

end for

The Lagrange dual problem to (P1) is

minimize
v

f∗(−A∗v) + g∗(−B∗v) + 〈v,b〉, (2)

which can derived from minv (−minx,y L(x,y,v)) on the Lagrangian:

L(x,y,v) = f(x) + g(y) + 〈v,Ax + By − b〉.

An ADM-ready formulation of (2) is{
minimize

u,v
f∗(−A∗u) + g∗(−B∗v) + 〈v,b〉

subject to u− v = 0.
(D1)

When ADM is applied to an ADM-ready formulation of a Lagrange dual problem, we call it Dual ADM.

The original ADM is called Primal ADM.
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Following similar steps, the ADM ready formulation of the Lagrange dual to (P2) is{
minimize

u,v
F ∗(−u) +G∗(−v)

subject to u− v = 0.
(D2)

The equivalence between (D1) and (D2) is trivial since

F ∗(u) = f∗(A∗u)

G∗(v) = g∗(B∗v)− 〈v,b〉,

which follows from Lemma 1.

Lemma 1. If L is affine and can be expressed as L(·) = A ·+b, the convex conjugate of L . f , the infimal

postcomposition of f by L, can be found as follows:

(L . f)∗(·) = f∗(A∗·) + 〈·,b〉.

Proof. Following from the definitions of convex conjugate and infimal postcomposition, we have

(L . f)∗(v) = sup
y
〈v,y〉 − L . f(y) = sup

x
〈v,Ax + b〉 − f(x)

= sup
x
〈A∗v,x〉 − f(x) + 〈v,b〉 = f∗(A∗v) + 〈v,b〉.

We apply ADM on (D1)/(D2) in Algorithm 3.

Algorithm 3 ADM on (D1)/(D2)

initialize u0
3, z0

3, λ > 0

for k = 0, 1, · · · do

vk+1
3 = arg min

v
G∗(−v) + λ

2 ‖u
k
3 − v + λ−1zk3‖22

uk+1
3 = arg min

u
F ∗(−u) + λ

2 ‖u− vk+1
3 + λ−1zk3‖22

zk+1
3 = zk3 + λ(uk+1

3 − vk+1
3 )

end for

The following equivalence is shown in Theorem 1.

ADM on (P1) ⇐⇒ ADM on (P2) ⇐⇒ ADM on (D1)/(D2)

Theorem 1 (Equivalence of Algorithms 1-3). Suppose Ax0
1 = s0

2 = z0
3 and z0

1 = z0
2 = u0

3 and that the same

parameter λ is used in Algorithms 1-3. Then, their equivalence can be established as follows:

1. From xk1 , yk1 , zk1 of Algorithm 1, we obtain tk2 , sk2 , zk2 of Algorithm 2 through:

tk2 = Byk1 − b, (3a)

sk2 = Axk1 , (3b)

zk2 = zk1 . (3c)
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From tk2 , sk2 , zk2 of Algorithm 2, we obtain yk1 , xk1 , zk1 of Algorithm 1 through:

yk1 = arg min
y
{g(y) : By − b = tk2}, (4a)

xk1 = arg min
x
{f(x) : Ax = sk2}, (4b)

zk1 = zk2 . (4c)

2. We can recover the iterates of Algorithm 2 and 3 from each other through

uk3 = zk2 , zk3 = sk2 . (5)

Proof. Part 1. Proof by induction.

We argue that under (3b) and (3c), Algorithms 1 and 2 have essentially identical subproblems in their first

steps at the kth iteration. Consider the following problem, which is obtained by plugging the definition of

G(·) into the tk+1
2 -subproblem of Algorithm 2:

(yk+1
1 , tk+1

2 ) = arg min
y,t

g(y) + ι{(y,t):By−b=t}(y, t) + (2λ)−1‖sk2 + t + λzk2‖22. (6)

If one minimizes over y first while keeping t as a variable, one eliminates y and recovers the tk+1
2 -subproblem

of Algorithm 2. If one minimizes over t first while keeping y as a variable, then after plugging in (3b) and

(3c), problem (6) reduces to the yk+1
1 -subproblem of Algorithm 1. In addition, (yk+1

1 , tk+1
2 ) obeys

tk+1
2 = Byk+1

1 − b, (7)

which is (3a) at k + 1. Plugging t = tk+1
2 into (6) yields problem (4a) for yk+1

1 , which must be equivalent

to the yk+1
1 -subproblem of Algorithm 2. Therefore, the yk+1

1 -subproblem of Algorithm 1 and the tk+1
2 -

subproblem of Algorithm 2 are equivalent through (3a) and (4a) at k + 1, respectively.

Similarly, under (7) and (3c), we can show that the xk+1
1 -subproblem of Algorithm 1 and the sk+1

2 -

subproblem of Algorithm 2 are equivalent through the formulas for (3b) and (4b) at k + 1, respectively.

Finally, under (3a) and (3b) at k + 1 and zk2 = zk1 , the formulas for zk+1
1 and zk+1

2 in Algorithms 1 and

2 are identical, and they return zk+1
1 = zk+1

2 , which is (3c) and (4c) at k + 1.

Part 2. Proof by induction. Suppose that (5) holds. We shall show that (5) holds at k + 1. Starting

from the optimality condition of the tk+1
2 -subproblem of Algorithm 2, we derive

0 ∈ ∂G(tk+1
2 ) + λ−1(sk2 + tk+1

2 + λzk2)

⇐⇒ tk+1
2 ∈ ∂G∗(−λ−1(sk2 + tk+1

2 + λzk2))

⇐⇒ λ
[
λ−1(sk2 + tk+1

2 + λzk2)
]
− (λzk2 + sk2) ∈ ∂G∗(−λ−1(sk2 + tk+1

2 + λzk2))

⇐⇒ − λ
[
λ−1(sk2 + tk+1

2 + λzk2)
]

+ (λuk3 + zk3) ∈ −∂G∗(−λ−1(sk2 + tk+1
2 + λzk2))

⇐⇒ 0 ∈ −∂G∗(−λ−1(sk2 + tk+1
2 + λzk2))− λ

[
uk3 − λ−1(sk2 + tk+1

2 + λzk2) + λ−1zk3
]

⇐⇒ vk+1
3 = λ−1(sk2 + tk+1

2 + λzk2) = λ−1(zk3 + tk+1
2 + λzk2),

where the last equivalence follows from the optimality condition for the vk+1
3 -subproblem of Algorithm 3.

Starting from the optimality condition of the sk+1
2 -subproblem of Algorithm 2, and applying the update,
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zk+1
2 = zk2 + λ−1(sk+1

2 + tk+1
2 ), in Algorithm 2 and the identity of tk+1

2 obtained above, we derive

0 ∈ ∂F (sk+1
2 ) + λ−1(sk+1

2 + tk+1
2 + λzk2)

⇐⇒ 0 ∈ ∂F (sk+1
2 ) + zk+1

2

⇐⇒ 0 ∈ sk+1
2 − ∂F ∗(−zk+1

2 )

⇐⇒ 0 ∈ λ(zk+1
2 − zk2)− tk+1

2 − ∂F ∗(−zk+1
2 )

⇐⇒ 0 ∈ λ(zk+1
2 − zk2) + zk3 + λ(zk2 − vk+1

3 )− ∂F ∗(−zk+1
2 )

⇐⇒ 0 ∈ −∂F ∗(−zk+1
2 ) + λ(zk+1

2 − vk+1
3 + λ−1zk3)

⇐⇒ zk+1
2 = uk+1

3 .

where the last equivalence follows from the optimality condition for the uk+1
3 -subproblem of Algorithm 3.

Finally, combining the update formulas of zk+1
2 and zk+1

3 in Algorithm 2 and 3, respectively, as well as the

identities for uk+1
3 and vk+1

3 obtained above, we obtain

zk+1
3 = zk3 + λ(uk+1

3 − vk+1
3 ) = sk + λ(zk+1

2 − zk2 − λ−1(sk2 + tk+1
2 ))

= λ(zk+1
2 − zk2)− tk+1

2 = sk+1
2 .

Remark 2. Following Part 1 of the theorem, we can view problem (P2) as the master problem of (P1),

whereas the two subproblems in (1) are independent. We can say that ADM is essentially an algorithm

applied only to the master problem (P2), which is Algorithm 2; this fact has been obscured by the often-seen

Algorithm 1, which integrates ADM on the master problem with the independent subproblems.

Part 2 of the theorem shows that ADM is a symmetric primal-dual algorithm. The reciprocal positions

of parameter λ indicates its function to “balance” the primal and dual progresses.

Remark 3. ADM’s primal-dual equivalence can also be derived by combining the following two equivalence

results: (i) the equivalence between ADM on the primal problem and the Douglas-Rachford splitting (DRS)

algorithm [7, 16] on the dual problem [12], and (ii) the equivalence result between DRS algorithms applied to

the master problem (P2) and its dual problem (cf. [8, Chapter 3.5][9]). In this paper, however, we provide

an elementary algebraic proof in order to derive the formulas in theorem 1 that recover the iterates of one

algorithm from another.

Next we give two concrete examples that illustrate the equivalence.

2.1 Example: basis pursuit

The basis pursuit problem seeks for the minimal `1 solution to a set of linear equations:

minimize
u

‖u‖1 subject to Au = b. (8)

Its Lagrange dual problem is

minimize
x

−bTx subject to ‖A∗x‖∞ ≤ 1. (9)

The YALL1 algorithms [20] implement ADMs on a set of primal and dual formulations for basis pursuit and

LASSO, yet ADM for (8) is not given (however, a linearized ADM is given for (8)). Although seemingly

awkward, problem (8) can be turned equivalently into the ADM-ready form

minimize
u,v

‖v‖1 + ι{u:Au=b}(u) subject to u− v = 0. (10)
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Similarly, problem (9) can be turned equivalently into the ADM-ready form

minimize
x,y

−bTx + ιB∞1 (y) subject to A∗x− y = 0. (11)

For simplicity, let us suppose that A has full row rank so the inverse of AA∗ exists. (Otherwise, Au = b

are redundant whenever they are consistent; and (AA∗)−1 shall be replaced by the pseudo-inverse below.)

ADM for problem (10) can be simplified to the iteration:

vk+1
3 = arg min

v
‖v‖1 +

λ

2
‖uk3 − v +

1

λ
zk3‖22, (12a)

uk+1
3 =vk+1

3 − 1

λ
zk3 −A∗(AA∗)−1(A(vk+1

3 − 1

λ
zk3)− b), (12b)

zk+1
3 =zk3 + λ(uk+1

3 − vk+1
3 ). (12c)

ADM for problem (11) can be simplified to the iteration:

yk+1
1 =PB∞1 (A∗xk1 + λzk1), (13a)

xk+1
1 =(AA∗)−1(Ayk+1

1 − λ(Azk1 − b)), (13b)

zk+1
1 =zk1 + λ−1(A∗xk+1

1 − yk+1
1 ). (13c)

The corollary below follows directly from Theorem 1 by associating (11) and (10) as (P1) and (D2), and

(13) and (12) with the iterations of Algorithms 1 and 3, respectively.

Corollary 1. Suppose that Au = b are consistent. Consider ADM iterations (12) and (13). Let u0
3 = z0

1

and z0
3 = A∗x0

1. Then, for k ≥ 1, iterations (12) and (13) are equivalent. In particular,

• From xk1 , zk1 in (13), we obtain uk3 , zk3 in (12) through:

uk3 = zk1 , zk3 = A∗xk1 .

• From uk3 , zk3 in (12), we obtain xk1 , zk1 in (13) through:

xk1 = (AA∗)−1Azk3 , zk1 = uk3 .

2.2 Example: basis pursuit denoising

The basis pursuit denoising problem is

minimize
u

‖u‖1 +
1

2α
‖Au− b‖22 (14)

and its Lagrange dual problem, in the ADM-ready form, is

minimize
x,y

−〈b,x〉+
α

2
‖x‖22 + ιB∞1 (y) subject to A∗x− y = 0. (15)

The iteration of ADM for (15) is

yk+1
1 =PB∞1 (A∗xk1 + λzk1), (16a)

xk+1
1 =(AA∗ + αλI)−1(Ayk+1

1 − λ(Azk1 − b)), (16b)

zk+1
1 =zk1 + λ−1(A∗xk+1

1 − yk+1
1 ). (16c)
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The ADM-ready form of the original problem (14) is

minimize
u,v

‖v‖1 +
1

2α
‖Au− b‖22 subject to u− v = 0, (17)

whose ADM iteration is

vk+1
3 = arg min

v
‖v‖1 +

λ

2
‖uk3 − v +

1

λ
zk3‖22 (18a)

uk+1
3 =(A∗A + αλI)−1(A∗b + αλvk+1

3 − αzk3) (18b)

zk+1
3 =zk3 + λ(uk+1

3 − vk+1
3 ) (18c)

The corollary below follows directly from Theorem 1.

Corollary 2. Consider ADM iterations (16) and (18). Let u0
3 = z0

1 and z0
3 = A∗x0

1. For k ≥ 1, ADM on

the dual and primal problems (16) and (18) are equivalent in the following way:

• From xk1 , zk1 in (16), we recover uk3 , zk3 in (18) through:

uk3 = zk1 , zk3 = A∗xk1 .

• From uk3 , zk3 in (18), we recover xk1 , zk1 in (16) through:

xk1 = −(Auk3 − b)/α, zk1 = uk3 .

Remark 4. Iteration (18) is different from that of ADM for another ADM-ready form of (14)

minimize
u,v

‖u‖1 +
1

2α
‖v‖22 subject to Au− v = b, (19)

which is used in [20]. In general, there are different ADM-ready forms and their ADM algorithms yield

different iterates. ADM on one ADM-ready form is equivalent to it on the corresponding dual ADM-ready

form.

3 ADM as a primal-dual algorithm on a saddle-point problem

As shown in section 2, ADM on a pair of convex primal and dual problems are equivalent, and there is a

connection between zk1 in Algorithm 1 and dual variable uk3 in Algorithm 3. This primal-dual equivalence

naturally suggests that ADM is also equivalent to a primal-dual algorithm involving both primal and dual

variables.

We derive problem (P1) into an equivalent primal-dual saddle-point problem (21) as follows:

min
y,x

g(y) + f(x) + ι{(x,y):Ax=b−By}(x,y)

= min
y
g(y) + F (b−By)

= min
y

max
u

g(y) + 〈−u,b−By〉 − F ∗(−u) (20)

= min
y

max
u

g(y) + 〈u,By − b〉 − f∗(−A∗u). (21)

A primal-dual algorithm for solving (21) is described in Algorithm 4. Theorem 2 establishes the equivalence

between Algorithms 1 and 4.

8



Algorithm 4 Primal-dual formulation of ADM on Problem (21)

initialize u0
5, u−1

5 , y0
5, λ > 0

for k = 0, 1, · · · do

ūk5 = 2uk5 − uk−1
5

yk+1
5 = arg min

y
g(y) + (2λ)−1‖By −Byk5 + λūk5‖22

uk+1
5 = arg min

u
f∗(−A∗u)− 〈u,Byk+1

5 − b〉+ λ/2‖u− uk5‖22
end for

Remark 5. Paper [4] proposed a primal-dual algorithm for (20) and obtained the connection between ADM

and that primal-dual algorithm [10]: When B = I, ADM is equivalent to the primal-dual algorithm in [4];

When B 6= I, the primal-dual algorithm is a preconditioned ADM as an additional proximal term δ/2‖y −
yk5‖22− (2λ)−1‖By−Byk5‖22 is added to the subproblem for yk+1

5 . This is also a special case of inexact ADM

in [6]. Our Algorithm 4 is a primal-dual algorithm that is equivalent to ADM in the general case.

Theorem 2 (Equivalence between Algorithms 1 and 4). Suppose that Ax0
1 = λ(u0

5 − u−1
5 ) + b−By0

5 and

z0
1 = u0

5. Then, Algorithms 1 and 4 are equivalent with the identities:

Axk1 = λ(uk5 − uk−1
5 ) + b−Byk5 , zk1 = uk5 , (22)

for all k > 0.

Proof. By assumption, (22) holds at iteration k = 0.

Proof by induction. Suppose that (22) holds at iteration k ≥ 0. We shall establish (22) at iteration k + 1.

From the first step of Algorithm 1, we have

yk+1
1 = arg min

y
g(y) + (2λ)−1‖Axk1 + By − b + λzk1‖22

= arg min
y

g(y) + (2λ)−1‖λ(uk5 − uk−1
5 ) + By −Byk5 + λuk5‖22,

which is the same as the first step in Algorithm 4. Thus we have yk+1
1 = yk+1

5 .

Combing the second and third steps of Algorithm 1, we have

0 ∈ ∂f(xk+1
1 ) + λ−1A∗(Axk+1

1 + Byk+1
1 − b + λzk1) = ∂f(xk+1

1 ) + A∗zk+1
1 .

Therefore,

xk+1
1 ∈ ∂f∗(−A∗zk+1

1 )

=⇒ Axk+1
1 ∈ ∂F ∗(−zk+1

1 )

⇐⇒ λ(zk+1
1 − zk1) + b−Byk+1

1 ∈ ∂F ∗(−zk+1
1 )

⇐⇒ zk+1
1 = arg min

z
F ∗(−z)− 〈z,Byk+1

1 − b〉+ λ/2‖z− zk1‖22

⇐⇒ zk+1
1 = arg min

z
f∗(−A∗z)− 〈z,Byk+1

5 − b〉+ λ/2‖z− uk5‖22,

where the last line is the second step of Algorithm 4. Therefore, we have zk+1
1 = uk+1

5 and Axk+1
1 =

λ(zk+1
1 − zk1) + b−Byk+1

1 = λ(uk+1
5 − uk5) + b−Byk+1

5 .
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4 Equivalence of ADM for different orders

In both problem (P1) and Algorithm 1, we can swap x and y and obtain Algorithm 5 below, which is still an

algorithm of ADM. In general, the two algorithms are different. In this section, we show that for a certain

type of function f (or g), Algorithms 1 and 5 become equivalent.

Algorithm 5 ADM2 on (P1)

initialize y0
4, z0

4, λ > 0

for k = 0, 1, · · · do

xk+1
4 = arg min

x
f(x) + (2λ)−1‖Ax + Byk4 − b + λzk4‖22

yk+1
4 = arg min

y
g(y) + (2λ)−1‖Axk+1

4 + By − b + λzk4‖22

zk+1
4 = zk4 + λ−1(Axk+1

4 + Byk+1
4 − b)

end for

The assumption that we need is that either proxF (·) or proxG(·) is affine (cf. (1) for the definitions of F

and G).

Definition 1. A mapping T is affine if, for any r1 and r2,

T

(
1

2
r1 +

1

2
r2

)
=

1

2
Tr1 +

1

2
Tr2.

Proposition 1. Let λ > 0. The following statements are equivalent:

1. proxG(·) is affine;

2. proxλG(·) is affine;

3. aproxG(·) ◦ bI + cI is affine for any scalars a, b and c;

4. proxG∗(·) is affine;

5. G is convex quadratic (or, affine or constant) and its domain dom(G) is either G or the intersection

of hyperplanes in G.

In addition, if function g is convex quadratic and its domain is the intersection of hyperplanes, then function

G defined in (1b) satisfies Part 5 above.

Proposition 2. If proxG(·) is affine, then the following holds for any r1 and r2:

proxG(·)(2r1 − r2) = 2proxG(·)r1 − proxG(·)r2. (23)

Proof. Equation (23) is obtained by defining r̄1 = 2r1 − r2 and r̄2 := r2 and rearranging

proxG(·)

(
1

2
r̄1 +

1

2
r̄2

)
=

1

2
proxG(·)r̄1 +

1

2
proxG(·)r̄2.

Theorem 3 (Equivalence of Algorithms 1 and 5).
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1. Assume that proxλG(·) is affine. Given the sequences yk4 , zk4 , and xk4 of Algorithm 5, if y0
4 and z0

4 satisfy

−z0
4 ∈ ∂G(By0

4−b), then we can initialize Algorithm 1 with x0
1 = x1

4 and z0
1 = z0

4+λ−1(Ax1
4+By0

4−b),

and recover the sequences xk1 and zk1 of Algorithm 1 through

xk1 = xk+1
4 , (24a)

zk1 = zk4 + λ−1(Axk+1
4 + Byk4 − b). (24b)

2. Assume that proxλF (·) is affine. Given the sequences xk1 , zk1 , and yk1 of Algorithm 1, if x0
1 and z0

1 satisfy

−z0
1 ∈ ∂F (Ax0

1), then we can initialize Algorithm 5 with y0
4 = y1

1 and z0
4 = z0

1 +λ−1(Ax0
1 + By1

1 −b),

and recover the sequences yk4 and zk4 of Algorithm 5 through

yk4 = yk+1
1 , (25a)

zk4 = zk1 + λ−1(Axk1 + Byk+1
1 − b). (25b)

Proof. We prove Part 1 only by induction. (The proof for the other part is similar.) The initialization of

Algorithm 1 clearly follows (24) at k = 0. Suppose that (24) holds at k ≥ 0. We shall show that (24) holds

at k + 1. We first show from the affine property of proxλG(·):

Byk+1
1 = 2Byk+1

4 −Byk4 . (26)

The optimization subproblems for y1 and y4 in Algorithms 1 and 5, respectively, are as follows:

yk+1
1 = arg min

y
g(y) + (2λ)−1‖Axk1 + By − b + λzk1‖22,

yk+1
4 = arg min

y
g(y) + (2λ)−1‖Axk+1

4 + By − b + λzk4‖22.

Following the definition of G in (1), we have

Byk+1
1 − b = proxλG(·)(−Axk1 − λzk1), (27a)

Byk+1
4 − b = proxλG(·)(−Axk+1

4 − λzk4), (27b)

Byk4 − b = proxλG(·)(−Axk4 − λzk−1
4 ). (27c)

The third step of Algorithm 5 is

zk4 = zk−1
4 + λ−1(Axk4 + Byk4 − b). (28)

(Note that for k = 0, the assumption −z0
4 ∈ ∂G(By0

4 − b) ensures the existence of z−1
4 in (27c) and (28).)

Then, (24) and (28) give us

Axk1 + λzk1
(24)
= Axk+1

4 + λzk4 + Axk+1
4 + Byk4 − b

= 2(Axk+1
4 + λzk4)− (λzk4 −Byk4 + b)

(28)
= 2(Axk+1

4 + λzk4)− (Axk4 + λzk−1
4 ).

Since proxλG(·) is affine, we have (23). Once we plug in (23): r1 = −Axk+1
4 − λzk4 , r2 = −Axk4 − λzk−1

4 ,

and 2r1 − r2 = −Axk1 − λzk1 and then apply (27), we obtain (26).

Next, the third step of Algorithm 5 and (26) give us

Byk+1
1 − b + λzk1

(26)
= 2(Byk+1

4 − b)− (Byk4 − b) + λzk4 + (Axk+1
4 + Byk4 − b)

= (Byk+1
4 − b) + λzk4 + (Axk+1

4 + Byk+1
4 − b)

= (Byk+1
4 − b) + λzk+1

4 .
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This identity shows that the updates of xk+1
1 and xk+2

4 in Algorithms 1 and 5, respectively, have identical

data, and therefore, we recover xk+1
1 = xk+2

4 .

Lastly, from the third step of Algorithm 1 and the identities above, it follows that

zk+1
1 = zk1 + λ−1(Axk+1

1 + Byk+1
1 − b)

= zk1 + λ−1
(
Axk+2

4 + (Byk+1
4 − b + λzk+1

4 − λzk1)
)

= zk+1
4 + λ−1(Axk+2

4 + Byk+1
4 − b).

Therefore, we obtain (24) at k + 1.

Remark 6. We can avoid the technical condition −z0
4 ∈ ∂G(By0

4 − b) on Algorithm 5 in Theorem 3 Part

1. When it does not hold, we can use the always-true relation −z1
4 ∈ ∂G(By1

4 −b) instead; correspondingly,

we shall add 1 iteration to the iterates of Algorithm 5, namely, initialize Algorithm 1 with x0
1 = x2

4 and

z0
1 = z1

4 + λ−1(Ax2
4 + By1

4 − b) and recover the sequences xk1 and zk1 of Algorithm 1 through

xk1 = xk+2
4 , (29a)

zk1 = zk+1
4 + λ−1(Axk+2

4 + Byk+1
4 − b). (29b)

Similar arguments apply to the other part of Theorem 3.

5 Application: extended monotropic programming

In this section, we use an example to demonstrate that the equivalent algorithms may still have different

per-iteration complexities and the primal-dual algorithm, Algorithm 4, may be preferable over the others.

The following extended monotropic program [2] arises in the setting of parallel and distributed computation:

minimize
x1,x2,··· ,xN

N∑
i=1

fi(xi) subject to

N∑
i=1

Aixi = b, (30)

where xi ∈ Rni , Ai ∈ Rm×ni , and b ∈ Rm, for i = 1, . . . , N . To apply ADM, one can convert the problem

into the following ADM-ready formulation by introducing variables/constraints yi = Axi: minimize
{xi},{yi}

N∑
i=1

fi(xi) + ι{y:
∑N

i=1 yi=b}(y)

subject to Aixi − yi = 0.

(31)

Problem (31) is in the form of (P1) with x := (x1,x2, · · · ,xN ) and y := (y1,y2, · · · ,yN ). Therefore, ADM

algorithms can be applied. In particular, Algorithm 1 has the following updates for every i at iteration k

(cf. [5]):

yk+1
i =

b

N
+ Aix

k
i + λzki −

1

N


N∑
j=1

Ajx
k
j + λzkj

 , (32a)

xk+1
i = arg min

xi

fi(xi) + (2λ)−1
∥∥Aixi − yk+1

i + λzki
∥∥2

2
, (32b)

zk+1
i =zki + λ−1(Aix

k+1
i − yk+1

i ). (32c)

Once
∑N
j=1 Ajx

k
j + λzkj is computed, the above three steps rely on data of subscript i only, so they can be

carried out for i = 1, . . . , N in parallel.
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Algorithm 4 for problem (31) has the following updates for every i at iteration k:

ūki =2uki − uk−1
i , (33a)

yk+1
i =

b

N
+ yki + λūki −

1

N


N∑
j=1

ykj + λūkj

 , (33b)

uk+1
i = arg min

ui

f∗i (−A∗iui) + (λ/2)
∥∥ui − uki + λ−1yk+1

i

∥∥2

2
. (33c)

Likewise, the above three steps can be carried out for i = 1, . . . , N in parallel except that computing∑N
j=1 Ajx

k
j + λzkj requires data of subscripts j = 1, . . . , N . In the distributed setting, the summation term

requires communication.

The following corollary, which is a direct result of Theorem 2, establishes the equivalence between itera-

tions (32) and (33).

Corollary 3. Suppose that Aix
0
i = λ(u0

i −u−1
i ) +y0

i and z0
i = u0

i for i = 1, 2, · · · , N . Then, iterations (32)

and (33) are equivalent with the following identities for all k ≥ 0:

Aix
k
i = λ(uki − uk−1

i ) + yki , zki = uki .

When (33c) is easy to solve, the complexity of algorithm (33) is smaller than that of algorithm (32).

5.1 An example with different complexities

Problem. In problem (30), let fi(·) = (1/2)‖ · ‖22 and AiA
∗
i = I for i = 1, 2, · · · , N . The problem becomes

finding the solution x satisfying the constraint
∑N
i=1 Aixi = b with the minimal `2 norm.

Primal-dual iteration: Since subproblem (33c) can be solved analytically, iteration (33) simplifies to:

ūki =2uki − uk−1
i , (34a)

yk+1
i =

b

N
+ yki + λūki −

1

N


N∑
j=1

ykj + λūkj

 , (34b)

uk+1
i =(λuki − yk+1

i )/(λ+ 1). (34c)

The complexity of (34) for each i and k is 10m flops, plus the communication cost if the summation is taken

in a distributed setting. To see this: (34a) has 2m flops; (34b) has 2m+ 3m flops, ignoring the summation

over j; (34c) has 3m flops. In addition, upon termination, we need an additional step to obtain xi by solving

minimize
xi

‖xi‖22 subject to Aixi = yi,

which can be done analytically by xi = A∗iyi for mni flops for each i.

ADM iteration: Since subproblem (32b) can be solved analytically, iteration (32) reduces to:

yk+1
i =

b

N
+ Aix

k
i + λzki −

1

N


N∑
j=1

Ajx
k
j + λzkj

 , (35a)

xk+1
i =(λI + A∗iAi)

−1A∗i (y
k+1
i − λzki ), (35b)

zk+1
i =zki + λ−1(Aix

k+1
i − yk+1

i ). (35c)

We can store (λI+A∗iAi)
−1A∗i for each i. Note that in the distributed setting, the summation in (35a) has the

same cost as that in (34b). Excluding the summation, the complexity of (35) for each i and k is 2mni+10m
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flops, which is calculated as follows: (35a) has mni+ 2m+ 3m flops; (35b) has mni+ 2m flops; (35c) has 3m

flops to find zi in (35c). In addition, it needs a preprocessing step to obtain (λI+A∗iAi)
−1A∗i = A∗i (λI+I)−1

for mni flops for each i.

To summarize, we can compare (34) and (35) as follows:

• For each i and k, (34) has 10m flops comparing to the 2mni + 10m flops of (35). Since (34) does not

explicitly update xi, it saves 2mni flops. Such saving is large and important when ni’s are large.

• In addition, (34) has a post-step and (35) has a pre-step, both of which have mni flops for each i.

• In the distributed setting, while the communication cost is the same for both algorithms, (34) is still

preferred over (35) since the 10m flops of (34) does not depend on i and thus is good for load balancing.

6 Application: Total variation image denoising

ADM (or Split Bregman [15]) has been applied to many image processing applications, and we apply the

previous equivalence results of ADM to derive several equivalent algorithms for the total variation image

denoising.

The total variation (ROF model [17]) applied on image denoising is

minimize
x∈BV (Ω)

∫
Ω

|Dx|+ α

2
‖x− b‖22

where x stands for an image and BV (Ω) is the set of all bounded variation functions on Ω. The first term

is known as the total variation of x, minimizing which tends to yield a piece-wise constant solution. The

discrete version is as follows:

minimize
x

‖∇x‖2,1 +
α

2
‖x− b‖22.

Without loss of generality, we consider the two-dimensional image x, and the discrete total variation ‖∇x‖2,1
of image x is defined as

‖∇x‖2,1 =
∑
ij

|(∇x)ij |,

where | · | is the 2-norm of vector (∇x)ij . The equivalent ADM-ready form [15, Equation (3.1)] is

minimize
x,y

‖y‖2,1 +
α

2
‖x− b‖22 subject to y −∇x = 0, (36)

and its problem in the ADM-ready form [3, Equation (8)] is

minimize
v,u

1

2α
‖div u + αb‖22 + ι{v:‖v‖2,∞≤1}(v) subject to u− v = 0, (37)

where ‖v‖2,∞ = max
ij
|(v)ij |.

In addition, the equivalent saddle-point problem is

min
x

max
v

1

2α
‖x− b‖22 + 〈v,∇x〉 − ι{v:‖v‖2,∞≤1}(v). (38)

We list the following equivalent algorithms for solving the total variation image denoising problem. The

equivalence result stated in Corollary 4 can be obtained from theorems 1-3.

14



1. Algorithm 1 (primal ADM) on (36) is

xk+1
1 = arg min

x

α

2
‖x− b‖22 + (2λ)−1‖∇x− yk1 + λzk1‖22, (39a)

yk+1
1 = arg min

y
‖y‖2,1 + (2λ)−1‖∇xk+1

1 − y + λzk1‖22, (39b)

zk+1
1 =zk1 + λ−1(∇xk+1

1 − yk+1
1 ). (39c)

2. Algorithm 3 (dual ADM) on (37) is

uk+1
2 = arg min

u

1

2α
‖div u + αb‖22 +

λ

2
‖vk2 − u + λ−1zk2‖22, (40a)

vk+1
2 = arg min

v
ι{v:‖v‖2,∞≤1}(v) +

λ

2
‖v − uk+1

2 + λ−1zk2‖22, (40b)

zk+1
2 =zk2 + λ(vk+1

2 − uk+1
2 ). (40c)

3. Algorithm 4 (primal-dual) on (38) is

v̄k3 =2vk3 − vk−1
3 (41a)

xk+1
3 = arg min

x

α

2
‖x− b‖22 + (2λ)−1‖∇x−∇xk3 + λv̄k3‖22, (41b)

vk+1
3 = arg min

v
ι{v:‖v‖2,∞≤1}(v)− 〈v,∇xk+1

3 〉+
λ

2
‖v − vk‖22. (41c)

4. Algorithm 5 (primal ADM with order swapped) on (36) is

yk+1
4 = arg min

y
‖y‖2,1 + (2λ)−1‖∇xk4 − y + λzk4‖22, (42a)

xk+1
4 = arg min

x

α

2
‖x− b‖22 + (2λ)−1‖∇x− yk+1

4 + λzk4‖22, (42b)

zk+1
4 =zk4 + λ−1(∇xk+1

4 − yk+1
4 ). (42c)

Corollary 4. Let x0
4 = b + α−1div z0

4. If the initialization for all algorithms (39)-(42) satisfy y0
1 = −z0

2 =

∇x0
3 − λ(v0

3 − v−1
3 ) = y1

4 and z0
1 = v0

2 = v0
3 = z0

4 + λ−1(∇x0
4 − y1

4). Then for k ≥ 1, we have the following

equivalence between the iterations of the four algorithms:

yk1 = −zk2 = ∇xk3 − λ(vk3 − vk−1
3 ) = yk+1

4 ,

zk1 = vk2 = vk3 = zk4 + λ−1(∇xk4 − yk+1
4 ).

Remark 7. In any of the four algorithms, the ∇ or div operator is separated in a different subproblem from

the term ‖·‖2,1 or its dual norm ‖·‖2,∞. The ∇ or div operator is translation invariant so their subproblems

can be solved by a diagonalization trick [18]. The subproblems involving the term ‖ · ‖2,1 or the indicator

function ι{v:‖v‖2,∞≤1} have closed-form solutions. Therefore, in addition to the equivalence results, all the

four algorithms have essentially the same per-iteration costs.
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